Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 98(2): 425-469, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38147116

RESUMEN

Fungi of the genus Alternaria are ubiquitous plant pathogens and saprophytes which are able to grow under varying temperature and moisture conditions as well as on a large range of substrates. A spectrum of structurally diverse secondary metabolites with toxic potential has been identified, but occurrence and relative proportion of the different metabolites in complex mixtures depend on strain, substrate, and growth conditions. This review compiles the available knowledge on hazard identification and characterization of Alternaria toxins. Alternariol (AOH), its monomethylether AME and the perylene quinones altertoxin I (ATX-I), ATX-II, ATX-III, alterperylenol (ALP), and stemphyltoxin III (STTX-III) showed in vitro genotoxic and mutagenic properties. Of all identified Alternaria toxins, the epoxide-bearing analogs ATX-II, ATX-III, and STTX-III show the highest cytotoxic, genotoxic, and mutagenic potential in vitro. Under hormone-sensitive conditions, AOH and AME act as moderate xenoestrogens, but in silico modeling predicts further Alternaria toxins as potential estrogenic factors. Recent studies indicate also an immunosuppressive role of AOH and ATX-II; however, no data are available for the majority of Alternaria toxins. Overall, hazard characterization of Alternaria toxins focused, so far, primarily on the commercially available dibenzo-α-pyrones AOH and AME and tenuazonic acid (TeA). Limited data sets are available for altersetin (ALS), altenuene (ALT), and tentoxin (TEN). The occurrence and toxicological relevance of perylene quinone-based Alternaria toxins still remain to be fully elucidated. We identified data gaps on hazard identification and characterization crucial to improve risk assessment of Alternaria mycotoxins for consumers and occupationally exposed workers.


Asunto(s)
Micotoxinas , Perileno , Humanos , Alternaria/metabolismo , Micotoxinas/toxicidad , Micotoxinas/análisis , Mutágenos/toxicidad , Mutágenos/metabolismo , Lactonas/toxicidad , Lactonas/metabolismo , Medición de Riesgo , Contaminación de Alimentos/análisis
3.
Arch Toxicol ; 94(5): 1673-1686, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32253466

RESUMEN

Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are man-made chemicals that are used for the fabrication of many products with water- and dirt-repellent properties. The toxicological potential of both substances is currently under debate. In a recent Scientific Opinion, the European Food Safety Authority (EFSA) has identified increased serum total cholesterol levels in humans as one major critical effect being associated with exposure to PFOA or PFOS. In animal studies, both substances induced a decrease of serum cholesterol levels, and the underlying molecular mechanism(s) for these opposed effects are unclear so far. In the present study, we examined the impact of PFOA and PFOS on cholesterol homoeostasis in the human HepaRG cell line as a model for human hepatocytes. Cholesterol levels in HepaRG cells were not affected by PFOA or PFOS, but both substances strongly decreased synthesis of a number of bile acids. The expression of numerous genes whose products are involved in synthesis, metabolism and transport of cholesterol and bile acids was strongly affected by PFOA and PFOS at concentrations above 10 µM. Notably, both substances led to a strong decrease of CYP7A1, the key enzyme catalyzing the rate-limiting step in the synthesis of bile acids from cholesterol, both at the protein level and at the level of gene expression. Moreover, both substances led to a dilatation of bile canaliculi that are formed by differentiated HepaRG cells in vitro. Similar morphological changes are known to be induced by cholestatic agents in vivo. Thus, the strong impact of PFOA and PFOS on bile acid synthesis and bile canalicular morphology in our in vitro experiments may allow the notion that both substances have a cholestatic potential that is connected to the observed increased serum cholesterol levels in humans in epidemiological studies.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Ácidos y Sales Biliares/metabolismo , Caprilatos/toxicidad , Fluorocarburos/toxicidad , Animales , Carcinoma Hepatocelular , Colesterol , Expresión Génica , Hepatocitos , Homeostasis , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Hepáticas
4.
Toxicol In Vitro ; 62: 104700, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31676336

RESUMEN

Perfluoralkylated substances (PFAS) such as perfluorooctanoic acid (PFOA) or perfluorooctanesulfonic acid (PFOS) are used to produce, e.g., surface coatings with water- and dirt-repellent properties. These substances have been shown to be hepatotoxic in rodents, and the mechanism of action is mostly attributed to the PFAS-mediated activation of the peroxisome proliferator-activated receptor alpha (PPARα). In the present study, we investigated by using luciferase-based reporter gene assays whether PFOA, PFOS and six alternative PFAS can activate, in addition to PPARα, eight other human nuclear receptors. All tested PFAS except for perfluorobutanesulfonic acid (PFBS) were able to activate human PPARα. Perfluoro-2-methyl-3-oxahexanoic acid (PMOH) and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were weak agonists of human PPARγ. The other human nuclear receptors (PPARδ, CAR, PXR, FXR, LXRα, RXRα and RARα) were not affected by any PFAS tested in this study. Although PMOH was more effective than PFOA in stimulating PPARα in the transactivation assay, it was less effective in stimulating PPARα-dependent target gene expression in human HepG2 hepatocarcinoma cells. Notably, any effect observed in this in vitro study only occurred at concentrations higher than 10 µM of the respective PFAS which is in all cases several magnitudes above the average blood concentration in the Western population. Thus, the results suggest that nuclear receptor activation may only play a minor role in potential PFAS-mediated adverse effects in humans.


Asunto(s)
Fluorocarburos/toxicidad , Receptores Citoplasmáticos y Nucleares/agonistas , Ácidos Alcanesulfónicos , Caprilatos , Línea Celular Tumoral , Expresión Génica/efectos de los fármacos , Genes Reporteros/efectos de los fármacos , Células HEK293 , Células Hep G2 , Humanos , PPAR alfa/efectos de los fármacos , Ácidos Sulfónicos , Activación Transcripcional/efectos de los fármacos
5.
Arch Toxicol ; 93(6): 1609-1637, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31250071

RESUMEN

Drug-induced liver injury (DILI) cannot be accurately predicted by animal models. In addition, currently available in vitro methods do not allow for the estimation of hepatotoxic doses or the determination of an acceptable daily intake (ADI). To overcome this limitation, an in vitro/in silico method was established that predicts the risk of human DILI in relation to oral doses and blood concentrations. This method can be used to estimate DILI risk if the maximal blood concentration (Cmax) of the test compound is known. Moreover, an ADI can be estimated even for compounds without information on blood concentrations. To systematically optimize the in vitro system, two novel test performance metrics were introduced, the toxicity separation index (TSI) which quantifies how well a test differentiates between hepatotoxic and non-hepatotoxic compounds, and the toxicity estimation index (TEI) which measures how well hepatotoxic blood concentrations in vivo can be estimated. In vitro test performance was optimized for a training set of 28 compounds, based on TSI and TEI, demonstrating that (1) concentrations where cytotoxicity first becomes evident in vitro (EC10) yielded better metrics than higher toxicity thresholds (EC50); (2) compound incubation for 48 h was better than 24 h, with no further improvement of TSI after 7 days incubation; (3) metrics were moderately improved by adding gene expression to the test battery; (4) evaluation of pharmacokinetic parameters demonstrated that total blood compound concentrations and the 95%-population-based percentile of Cmax were best suited to estimate human toxicity. With a support vector machine-based classifier, using EC10 and Cmax as variables, the cross-validated sensitivity, specificity and accuracy for hepatotoxicity prediction were 100, 88 and 93%, respectively. Concentrations in the culture medium allowed extrapolation to blood concentrations in vivo that are associated with a specific probability of hepatotoxicity and the corresponding oral doses were obtained by reverse modeling. Application of this in vitro/in silico method to the rat hepatotoxicant pulegone resulted in an ADI that was similar to values previously established based on animal experiments. In conclusion, the proposed method links oral doses and blood concentrations of test compounds to the probability of hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Administración Oral , Algoritmos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Técnicas In Vitro , Dosis Máxima Tolerada , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/sangre , Farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Máquina de Vectores de Soporte
6.
Toxicol Lett ; 291: 51-60, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29601859

RESUMEN

The perfluoroalkylated substances (PFAS) perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) are used for the fabrication of water- and dirt-repellent surfaces. The use of PFOS and PFOA was restricted due to their reprotoxic properties and their environmental persistence. Therefore, industry switches to alternative PFAS, however, in contrast to PFOA and PFOS only few toxicological data are available for their substitutes. The molecular mechanism(s) underlying reproductive toxicity of PFOA and PFOS are largely unknown. Here, the endocrine properties of PFOA, PFOS, and of six substitutes including perfluorohexanesulfonic acid (PFHxS), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorobutanoic acid (PFBA), ammonium perfluoro(2-methyl-3-oxahexanoate) (PMOH), and 3H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP) were examined in vitro by using human cell lines such as MCF-7, H295R, LNCaP and MDA-kb2. PFOA, PFOS and PMOH enhanced 17ß-estradiol-stimulated estrogen receptor ß activity, and PFOS, PMOH, PFHxA and PFBA enhanced dihydrotestosterone-stimulated androgen receptor activity. In the H295R steroidogenesis assay, PFOA and PFOS slightly enhanced estrone secretion, and progesterone secretion was marginally increased by PFOA. All these effects were only observed at concentrations above 10 µM, and none of the PFAS displayed any effect on any of the molecular endocrine endpoints at concentrations of 10 µM or below. Thus, as the blood serum concentrations of the different PFAS in the general Western population are in the range of 10 nM or below, the results suggest that PFAS might not exert endocrine effects in humans at exposure-relevant concentrations according to the molecular endpoints examined in this study.


Asunto(s)
Disruptores Endocrinos/farmacología , Fluorocarburos/farmacología , Receptores Androgénicos/efectos de los fármacos , Receptores de Estrógenos/efectos de los fármacos , Esteroides/biosíntesis , Línea Celular , Supervivencia Celular/efectos de los fármacos , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor beta de Estrógeno/efectos de los fármacos , Humanos , Progesterona/metabolismo
7.
Toxicol Lett ; 287: 83-91, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29421333

RESUMEN

DINCH® (di-isononyl cyclohexane-1,2-dicarboxylate) is a non-phthalate plasticizer that has been developed to replace phthalate plasticizers such as DEHP (di-2-ethylhexyl phthalate) or DINP (di-isononyl phthalate). DINCH® is metabolized to its corresponding monoester and subsequently to oxidized monoester derivatives. These are conjugated to glucuronic acid and subject to urinary excretion. In contrast to DINCH®, there are almost no toxicological data available regarding its primary and secondary metabolites. The present study aimed at the characterization of potential endocrine properties of DINCH® and five DINCH® metabolites by using reporter gene assays to monitor the activity of the human nuclear receptors ERα, ERß, AR, PPARα and PPARγ in vitro. DINCH® itself did not have any effect on the activity of these receptors whereas DINCH® metabolites were shown to activate all these receptors. In the case of AR, DINCH® metabolites predominantly enhanced dihydrotestosterone-stimulated AR activity. In the H295R steroidogenesis assay, neither DINCH® nor any of its metabolites affected estradiol or testosterone synthesis. In conclusion, primary and secondary DINCH® metabolites exert different effects at the molecular level compared to DINCH® itself. All these in vitro effects of DINCH® metabolites, however, were only observed at high concentrations such as 10 µM or above which is about three orders of magnitude above reported DINCH® metabolite concentrations in human urine. Thus, the in vitro data do not support the notion that DINCH® or any of the investigated metabolites may exert considerable endocrine effects in vivo at relevant human exposure levels.


Asunto(s)
Andrógenos/toxicidad , Ácidos Ciclohexanocarboxílicos/toxicidad , Ácidos Dicarboxílicos/toxicidad , Disruptores Endocrinos/toxicidad , Receptor alfa de Estrógeno/agonistas , Receptor beta de Estrógeno/agonistas , Estrógenos/toxicidad , PPAR alfa/agonistas , PPAR gamma/agonistas , Plastificantes/toxicidad , Receptores Androgénicos/efectos de los fármacos , Andrógenos/orina , Biotransformación , Ácidos Ciclohexanocarboxílicos/orina , Ácidos Dicarboxílicos/orina , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/orina , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Estrógenos/orina , Genes Reporteros , Células HEK293 , Humanos , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Plastificantes/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Medición de Riesgo , Transfección
8.
Eur J Pharm Biopharm ; 118: 21-29, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27993735

RESUMEN

Size and shape are crucial parameters which have impact on the potential of nanoparticles to penetrate cell membranes and epithelial barriers. Current research in nanotoxicology additionally focuses on particle coating. To distinguish between core- and coating-related effects in nanoparticle uptake and translocation, two nanoparticles equal in size, coating and charge but different in core material were investigated. Silver and iron oxide nanoparticles coated with poly (acrylic acid) were chosen and extensively characterized by small-angle x-ray scattering, nanoparticle tracing analysis and transmission electron microscopy (TEM). Uptake and transport were studied in the intestinal Caco-2 model in a Transwell system with subsequent elemental analysis. TEM and ion beam microscopy were conducted for particle visualization. Although equal in size, charge and coating, the behavior of the two particles in Caco-2 cells was different: while the internalized amount was comparable, only iron oxide nanoparticles additionally passed the epithelium. Our findings suggest that the coating material influenced only the uptake of the nanoparticles whereas the translocation was determined by the core material. Knowledge about the different roles of the particle coating and core materials in crossing biological barriers will facilitate toxicological risk assessment of nanoparticles and contribute to the optimization of pharmacokinetic properties of nano-scaled pharmaceuticals.


Asunto(s)
Resinas Acrílicas/química , Materiales Biocompatibles Revestidos/metabolismo , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Nanopartículas/metabolismo , Células CACO-2 , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular , Materiales Biocompatibles Revestidos/administración & dosificación , Materiales Biocompatibles Revestidos/química , Enterocitos/ultraestructura , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Humanos , Mucosa Intestinal/citología , Microscopía Electrónica de Transmisión , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de la Partícula , Permeabilidad , Dispersión del Ángulo Pequeño , Plata/administración & dosificación , Plata/química , Plata/metabolismo , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...